服务电话:4008-351137

当前位置: 首页 » 人物访谈 » 正文

中科院戴俊彪:为合成酵母染色体开发基因重排“筛选系统”

放大字体  缩小字体 发布日期:2018-05-28  来源:澎湃新闻  浏览次数:608
核心提示:国际顶级期刊《自然》(Nature)子刊《自然•通讯》(Nature Communications)以专刊形式齐发7篇成果,中英美德四国科研团队围绕在人工合成酵母染色体上加装的SCRaMbLE 系统(Synthetic Chromosome Recombination and Modification by LoxP-Mediated Evolution)及其应用展开了一系列研究。
 180528戴俊彪
戴俊彪男,美国约翰霍普金斯医学院博士后  ,清华大学生命科学学院特别副研究员
基本资料:
工作履历:
2011~至今,
清华大学生命科学学院特别副研究员;  
2006~2011,Johns Hopkins University School of Medicine
博士后

教育背景
2000~2006,Iowa State University博士
1997~2000,
清华大学生命科学与技术系硕士
1993~1997,
南京大学基础学科教学强化部学士
主要科研领域与方向:
1〉染色质生物学与表观遗传学;  2〉合成生物学
    北京时间5月23日凌晨,国际顶级期刊《自然》(Nature)子刊《自然•通讯》(Nature Communications)以专刊形式齐发7篇成果,中英美德四国科研团队围绕在人工合成酵母染色体上加装的SCRaMbLE 系统(Synthetic Chromosome Recombination and Modification by LoxP-Mediated Evolution)及其应用展开了一系列研究。这些研究工作均为国际科研项目“人工合成酵母基因组计划(Sc2.0)”的一部分,该项目由美国科学院院士Jef Boeke主导。一年之前,《科学》杂志也在同一天在线发表了国际团队共同完成的7篇专刊文章。
    中国科学院深圳先进技术研究院合成生物学所合成基因组学研究中心的领头人戴俊彪是Sc2.0项目的主要负责人之一。在去年的那批成果中,戴俊彪及其团队攻克的是酵母中最长的那条染色体(12号合成染色体)的人工合成。此次发布的最新进展中,戴俊彪课题组和英国曼彻斯特大学蔡毅之课题组合作发表了其中2篇论文。
    戴俊彪在接受媒体采访时表示,“要想用这个SCRaMbLE系统,实际上最好需要一套严格的筛选系统,把染色体上发生了重组的细胞筛选出来,所以我们就开发了ReSCuES系统,帮助我们非常有效地筛选基因组发生了重排的菌株。”
    而所谓的SCRaMbLE系统,则是贯穿了此次7篇论文的一个“主角”。 该系统可以在短时间内快速地让合成的酵母染色体发生重新排列,被认为赋予了进化“超能力”。而在大自然演化中,物种的基因组序列在整个生命过程中通常需要维持相对稳定,以保证生命机器的有序进行,现如今多样的基因组其实是经历了亿万年的循序渐化。


 

合成酵母的“进化加速器”——ReSCuES系统

给SCRaMbLE系统加道“保险”
    SCRaMbLE系统最早于2011年由Boeke及其团队首次发表于《自然》。戴俊彪和蔡毅之合作团队的工作则是确保合成染色体的基因组序列发生了变化,从而进一步为进化“提速”。
助力酵母菌株工业应用
    与实验室培养不同,在工业应用过程中酵母通常需要面对来自环境中不同的胁迫,包括酵母自身发酵产生的乙醇、乙酸等有毒害作用的物质,以及来自发酵培养过程中的高温、高盐等不适的环境条件。如何提高酵母对环境胁迫的耐受性一直是工业应用领域内的研究热点。
    基于该“进化加速器”,研究团队首先以含有第12号合成染色体的菌株为模型,成功实现了乙醇耐受性的提升并提高了乙醇的发酵产量。然后以筛选获得的耐受菌株为对象,解析耐受性背后的机制为,3’非编码区调节Ace2p转录因子水平进而调控细胞乙醇耐受性。最后研究团队以多个不同的合成菌株为起点,成功实现了高温耐受性和乙酸耐受性的提升。进化后的菌株在高浓度的乙酸条件下的生物量积累可以提高将近40倍。
    除了提高菌株对不利因素的耐受性,快速实现目标产物代谢途径和底盘细胞的优化适配是目标产物产量最大化的另外一个重要方面。形象来说,就如水利输送系统,为了达到最优的输送効率,不仅需要优化各步骤的运输能力,使它们相互协调(目标产物代谢途径优化),还需要增加来源和减少运输过程中的不必要的消耗(底盘细胞优化适配)。
    针对这一问题,戴俊彪表示,“我们先在体外用SCRaMbLE的办法把一条代谢通路上的基因、调控元件进行重排,再把重排后的元件插入到合成酵母的基因组里面去。”经过这一步,实现了底盘基因组的多样化。随后,通过合适的筛选,即可获得外源代谢途径与底盘相互优化适配的高产菌株。
    研究团队用提高β-胡萝卜素和紫色杆菌素产量验证了这一流程的高效。研究团队通过SCRaMbLE-in技术将优化后的代谢途径插入合成基因组中,并同时重排底盘细胞基因组,实现目标产物产量的第一次提升,即提升将近5倍。最后,通过多轮的SCRaMbLE实现生产菌株的产量的连续提升,最终产量为初始产量的将近20倍。

 
 
[ 资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

 
0条 [查看全部]  相关评论

 
推荐图文
推荐资讯
点击排行